МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Министерство образования, науки и молодежной политики Краснодарского края

Департамент образования администрации муниципального образования город Краснодар

MAOY COIII.№ 47

Директор МАОУ №47
______Легостаева Т.В.
Приказ № 1
от 30.08.2023г.

РАБОЧАЯ ПРОГРАММА

учебного предмета «Химия»

для обучающихся 10-11 классов

Учитель, разработчик рабочей программы <u>Журавлева Инга Эдуардовна,</u> учитель химии МАОУ СОШ № 47

Программа разработана в соответствии <u>с</u> Федеральным Государственным образовательным стандартом среднего общего образования, ФРП по химии

С учетом УМК учебников О.С. Габриеляна, И. Г. Остроумова, С.А. Сладкова «Химия. 10 и 11 класс», Москва «Просвещение», 2020г

г. Краснодар, 2023

Пояснительная записка

Рабочая программа по химии на уровень среднего общего образования для обучающихся 10-11-х классов разработана в соответствии с требованиями:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказа Минпросвещения от 31.05.2021 № 287 «Об утверждении федерального государственного образовательного стандарта среднего общего образования»;
- приказа Минпросвещения от 23.11.22 № 1014 «Об утверждении федеральной образовательной программы среднего общего образования»;
- приказа Минпросвещения от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования»;
- СП 2.4.3648-20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденных постановлением главного санитарного врача от 28.09.2020 № 28;
- СанПиН 1.2.3685-21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденных постановлением главного санитарного врача от 28.01.2021 № 2;
- учебного плана основного общего образования, утвержденного приказом директора МАОУ СОШ № 47 от _30.08 № _1_ «Об утверждении основной образовательной программы основного общего образования»;
- федеральной рабочей программы по учебному предмету «Химия»

Рабочая программа ориентирована на целевые приоритеты, сформулированные в федеральной рабочей программе воспитания и в рабочей программе воспитания МАОУ СОП № 47.

Основу подходов к разработке программы по химии, к определению общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Химия» для 10–11 классов на базовом уровне составили концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников.

В соответствии с данными положениями программа по химии (базовый уровень) на уровне среднего общего образования:

устанавливает обязательное (инвариантное) предметное содержание, определяет количественные и качественные его характеристики на каждом этапе изучения предмета, предусматривает принципы структурирования

содержания и распределения его по классам, основным разделам и темам курса;

даёт примерное распределение учебных часов по тематическим разделам, рекомендует примерную последовательность изучения отдельных тем курса с учётом межпредметных и внутрипредметных связей, логики учебного процесса, возрастных особенностей обучающихся 10–11 классов;

даёт методическую интерпретацию целей изучения предмета на уровне современных приоритетов в системе среднего общего образования, содержательной характеристики планируемых результатов освоения основной образовательной программы среднего общего образования (личностных, метапредметных, предметных), основных видов учебно-познавательной деятельности обучающегося по освоению содержания предмета. По всем названным позициям в программе по химии соблюдена преемственность с федеральной рабочей программой основного общего образования по химии (для 8–9 классов образовательных организаций, базовый уровень).

Химическое образование, получаемое выпускниками общеобразовательной организации, является неотъемлемой частью их образованности. Оно служит завершающим этапом реализации на соответствующем ему базовом уровне ключевых ценностей, присущих целостной системе химического образования. ценности касаются познания законов природы, формирования мировоззрения общей культуры человека, a также экологически обоснованного отношения к своему здоровью и природной среде. Реализуется химическое образование обучающихся на уровне среднего образования средствами учебного предмета «Химия», содержание построение которого определены в программе по химии с учётом специфики науки химии, её значения в познании природы и в материальной жизни общества, а также с учётом общих целей и принципов, характеризующих современное состояние системы среднего общего образования в Российской Федерации. Так, например, при формировании содержания предмета «Химия» учтены следующие положения о специфике и значении науки химии.

Химия как элемент системы естественных наук играет особую роль в современной цивилизации, в создании новой базы материальной культуры. Она вносит свой вклад в формирование рационального научного мышления, в создание целостного представления об окружающем мире как о единстве природы и человека, которое формируется в химии на основе понимания

вещественного состава окружающего мира, осознания взаимосвязи между строением веществ, их свойствами и возможными областями применения.

Тесно взаимодействуя с другими естественными науками, химия стала неотъемлемой частью мировой культуры, необходимым условием успешного труда и жизни каждого члена общества. Современная химия как наука созидательная, как наука высоких технологий направлена на решение глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой, экологической безопасности и охраны здоровья.

В соответствии с общими целями и принципами среднего общего образования содержание предмета «Химия» (10-11 классы, базовый уровень изучения) преимущественно общекультурную ориентировано на подготовку необходимую выработки обучающихся, мировоззренческих ДЛЯ ориентиров, успешного включения жизнь социума, В продолжения образования в различных областях, не связанных непосредственно с химией.

Составляющими предмета «Химия» являются базовые курсы — «Органическая химия» и «Общая и неорганическая химия», основным компонентом содержания которых являются основы базовой науки: система знаний по неорганической химии (с включением знаний из общей химии) и органической химии. Формирование данной системы знаний при изучении предмета обеспечивает возможность рассмотрения всего многообразия веществ на основе общих понятий, законов и теорий химии.

Структура содержания курсов – «Органическая химия» и «Общая и неорганическая химия» сформирована в программе по химии на основе системного подхода к изучению учебного материала и обусловлена исторически обоснованным развитием знаний на определённых теоретических уровнях. Так, в курсе органической химии вещества рассматриваются на уровне классической теории строения органических уровне стереохимических и а также на представлений о строении веществ. Сведения об изучаемых в курсе веществах даются в развитии – от углеводородов до сложных биологически активных соединений. В курсе органической химии получают развитие сформированные на уровне основного общего образования первоначальные представления о химической связи, классификационных признаках веществ, зависимости свойств веществ от их строения, о химической реакции.

Под новым углом зрения в предмете «Химия» базового уровня рассматривается изученный на уровне основного общего образования теоретический материал и фактологические сведения о веществах и химической реакции. Так, в частности, в курсе «Общая и неорганическая химия» обучающимся предоставляется возможность осознать значение периодического закона с общетеоретических и методологических позиций, глубже понять историческое изменение функций этого закона — от обобщающей до объясняющей и прогнозирующей.

Единая система знаний о важнейших веществах, их составе, строении, свойствах и применении, а также о химических реакциях, их сущности и закономерностях протекания дополняется в курсах 10 и 11 классов элементами содержания, имеющими культурологический и прикладной характер. Эти знания способствуют пониманию взаимосвязи химии с другими науками, раскрывают её роль в познавательной и практической деятельности человека, способствуют воспитанию уважения к процессу творчества в области теории и практических приложений химии, помогают выпускнику ориентироваться в общественно Федеральная рабочая программа и личностно значимых проблемах, связанных с химией, критически осмысливать информацию и применять её для пополнения знаний, решения интеллектуальных и экспериментальных исследовательских задач. В целом содержание учебного предмета «Химия» данного уровня изучения ориентировано на формирование у обучающихся мировоззренческой основы для понимания философских идей, таких как: материальное единство неорганического и органического мира, обусловленность свойств веществ их составом и строением, познаваемость природных явлений путём эксперимента и решения противоречий между новыми фактами и теоретическими предпосылками, осознание роли химии в решении экологических проблем, а также проблем сбережения энергетических ресурсов, сырья, создания новых технологий и материалов.

В плане решения задач воспитания, развития и социализации обучающихся принятые программой по химии подходы к определению содержания и построения предмета предусматривают формирование универсальных учебных действий, имеющих базовое значение для различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта практической и исследовательской деятельности, занимающей важное место в познании химии.

Рабочая программа по химии на уровень среднего общего образования для обучающихся 10-11-х классов разработана в соответствии с требованиями:

- Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации»;
- приказа Минпросвещения от 31.05.2021 № 287 «Об утверждении федерального государственного образовательного стандарта основного общего образования»;
- приказа Минпросвещения от 18.05.2023 № 370 «Об утверждении федеральной образовательной программы основного общего образования»;
- приказа Минпросвещения от 22.03.2021 № 115 «Об утверждении Порядка организации и осуществления образовательной деятельности по основным общеобразовательным программам образовательным программам начального общего, основного общего и среднего общего образования»;
- СП 2.4.3648–20 «Санитарно-эпидемиологические требования к организациям воспитания и обучения, отдыха и оздоровления детей и молодежи», утвержденных постановлением главного санитарного врача от 28.09.2020 № 28;
- СанПиН 1.2.3685—21 «Гигиенические нормативы и требования к обеспечению безопасности и (или) безвредности для человека факторов среды обитания», утвержденных постановлением главного санитарного врача от 28.01.2021 № 2;
- концепции преподавания русского языка и литературы в Российской Федерации, утвержденной распоряжением Правительства от 09.04.2016 № 637-р;
- учебного плана основного общего образования, утвержденного приказом директора МАОУ СОШ № 47 от _30.08 № _1_ «Об утверждении основной образовательной программы основного общего образования»;
- федеральной рабочей программы по учебному предмету «Химия».

Рабочая программа ориентирована на целевые приоритеты, сформулированные в федеральной рабочей программе воспитания и в рабочей программе воспитания МАОУ СОШ № 47

Для реализации программы используются учебники, допущенные к использованию при реализации имеющих государственную аккредитацию

образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, приказом Минпросвещения от 21.09.2022 № 858:

- «Химия. 10 класс» Габриелян О. С., Остроумов И. Г., Сладков С. А. «Просвещение» 2019 г.
- «Химия. 11 класс» Габриелян О. С., Остроумов И. Г., Сладков С. А. «Просвещение» 2020 г.

Электронные образовательные ресурсы, допущенные к использованию при реализации имеющих государственную аккредитацию образовательных программ начального общего, основного общего, среднего общего образования организациями, осуществляющими образовательную деятельность, приказом Минпросвещения от 02.08.2022 № 653:

- Электронный архив научно популярных журналов http://library.controlchaostech.com/bel/
- Единая коллекция цифровых образовательных ресурсов http://school-collection.edu.ru;
- Федеральный центр информационно-образовательных ресурсов http://fcior.edu.ru.

В практике преподавания химии как на уровне основного общего образования так и на уровне среднего общего образования, при определении содержательной характеристики целей изучения предмета направлением первостепенной значимости традиционно признаётся формирование основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. С методической точки зрения такой подход к определению целей изучения предмета является вполне оправданным.

Согласно данной точке зрения главными целями изучения предмета «Химия» на базовом уровне (10-11 кл.) являются:

формирование системы химических знаний как важнейшей составляющей естественно-научной картины мира, в основе которой лежат ключевые понятия, фундаментальные законы и теории химии, освоение языка науки, усвоение и понимание сущности доступных обобщений мировоззренческого характера, ознакомление с историей их развития и становления;

формирование и развитие представлений о научных методах познания веществ и химических реакций, необходимых для приобретения умений ориентироваться в мире веществ и химических явлений, имеющих место в природе, в практической и повседневной жизни;

развитие умений и способов деятельности, связанных с наблюдением и объяснением химического эксперимента, соблюдением правил безопасного обращения с веществами.

Наряду с этим содержательная характеристика целей и задач изучения предмета в программе по химии уточнена и скорректирована в соответствии

с новыми приоритетами в системе среднего общего образования. Сегодня в преподавании химии в большей степени отдаётся предпочтение практической компоненте содержания обучения, ориентированной на подготовку выпускника общеобразовательной организации, владеющего не набором знаний, а функциональной грамотностью, то есть способами и умениями активного получения знаний и применения их в реальной жизни для решения практических задач.

В этой связи при изучении предмета «Химия» доминирующее значение приобретают такие цели и задачи, как:

адаптация обучающихся к условиям динамично развивающегося мира, формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию грамотных решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

формирование у обучающихся ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта деятельности, которая занимает важное место в познании химии, а также для оценки с позиций экологической безопасности характера влияния веществ и химических процессов на организм человека и природную среду;

развитие познавательных интересов, интеллектуальных и творческих способностей обучающихся: способности самостоятельно приобретать новые знания по химии в соответствии с жизненными потребностями, использовать

современные информационные технологии для поиска и анализа учебной и научно-популярной информации химического содержания;

формирование и развитие у обучающихся ассоциативного и логического мышления, наблюдательности, собранности, аккуратности, которые особенно необходимы, в частности, при планировании и проведении химического эксперимента;

воспитание у обучающихся убеждённости в гуманистической направленности химии, её важной роли в решении глобальных проблем рационального природопользования, пополнения энергетических ресурсов и сохранения природного равновесия, осознания необходимости бережного отношения к природе и своему здоровью, а также приобретения опыта использования полученных знаний для принятия грамотных решений в ситуациях, связанных с химическими явлениями.

Цели и задачи изучения предмета «Химия» получили подробную методическую интерпретацию в разделе «Планируемые результаты освоения программы по химии», благодаря чему обеспечено чёткое представление о том, какие знания и умения имеют прямое отношение к реализации конкретной цели.

ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ

Деятельность образовательного учреждения общего образования в обучении биологии в средней (полной) школе должна быть направлена на достижение обучающимися следующих **личностных результатов**:

Личностные результаты:

- 1.сформированность положительного отношения к химии, что обусловливает мотивацию к учебной деятельности в выбранной сфере;
- 2. сформированность умения решать проблемы поискового и творческого характера;
- 3. сформированность умения проводить самоанализ и осуществлять самоконтроль и самооценку на основе критериев успешности;
- 4. сформированность готовности следовать нормам природо и здоровьсберегающего поведения;

- 5. сформированность прочных навыков, направленных на саморазвитие через самообразование;
- 6. сформированность навыков проявления познавательной инициативы в учебном сотрудничестве.

Личностные результаты отражают сформированность, в том числе в части:

- 1. Патриотического воспитания ценностного отношения к отечественному культурному, историческому и научному наследию, понимания значения биологии как науки в жизни современного общества, способности владеть достоверной информацией о передовых достижениях и открытиях мировой и отечественной биологии, заинтересованности в научных знаниях об устройстве мира и общества;
- 2. Гражданского воспитания и нравственного воспитания детей на основе российских традиционных ценностей представления о социальных нормах и правилах межличностных отношений в коллективе, готовности к разнообразной совместной деятельности при выполнении учебных, познавательных задач, выполнении экспериментов, создании учебных проектов, стремления к взаимопониманию и взаимопомощи в процессе этой учебной деятельности; готовности оценивать своё поведение и поступки своих товарищей. с позиции нравственных и правовых норм с учётом осознания последствий поступков;
- 3. Популяризации научных знаний среди детей (Ценности научного познания) Мировоззренческих представлений соответствующих современному уровню развития науки и составляющих основу для понимания сущности научной картины мира;

представлений об основных закономерностях развития природы, взаимосвязях человека с природной средой, о роли предмета в познании этих закономерностей;

познавательных мотивов, направленных на получение новых знаний по предмету, необходимых для объяснения наблюдаемых процессов и явлений;

познавательной и информационной культуры, в том числе навыков самостоятельной работы с учебными текстами, справочной литературой, доступными техническими средствами информационных технологий;

интереса к обучению и познанию, любознательности, готовности и — способности к самообразованию, исследовательской деятельности, к осознанному выбору направленности и уровня обучения в дальнейшем;

- 4. Физического воспитания и формирования культуры здоровья осознания ценности жизни, ответственного отношения к своему здоровью, установки на здоровый образ жизни, осознания последствий и неприятия вредных привычек, необходимости соблюдения правил безопасности в быту и реальной жизни;
- воспитания профессионального Трудового И самоопределения коммуникативной компетентности В общественно полезной, учебно исследовательской, творческой и других видах деятельности; интереса к практическому изучению профессий и труда различного рода, в том числе на основе применения предметных знаний, осознанного выбора индивидуальной траектории продолжения образования с учётом личностных интересов и способности к предмету, общественных интересов и потребностей;
- 6. Экологического воспитания экологически целесообразного отношения к природе как источнику Жизни на Земле, основе её существования, понимания ценности здорового и безопасного образа жизни, ответственного отношения к собственному физическому и психическому здоровью, осознания ценности соблюдения правил безопасного поведения при работе с веществами, а также в ситуациях, угрожающих здоровью и жизни людей;

способности применять знания, получаемые при изучении предмета, для решения задач, связанных с окружающей природной средой, повышения уровня экологической культуры, осознания глобального характера экологических проблем и путей их решения посредством методов предмета;

экологического мышления, умения руководствоваться им в познавательной, коммуникативной и социальной практике.

Метапредметными результатами освоения выпускниками старшей школы базового курса химии являются:

- 1) овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы, давать определения понятиям, классифицировать, наблюдать, проводить эксперименты, делать выводы и заключения, структурировать материал, объяснять, доказывать, защищать свои идеи;
- 2) умения работать с разными источниками химической информации: находить химическую информацию в различных источниках (тексте учебника, научно-популярной литературе, химических словарях и справочниках), анализировать и оценивать информацию, преобразовывать информацию из одной формы в другую;
- 3) способность выбирать целевые и смысловые установки в своих действиях и поступках по отношению к живой природе, своему здоровью и здоровью окружающих;
- 4) умения адекватно использовать речевые средства для дискуссии и аргументации своей позиции, сравнивать разные точки зрения, аргументировать свою точку зрения, отстаивать свою позицию.

Предметными результатами освоения выпускниками старшей школы курса химии базового уровня являются:

- 1. В познавательной (интеллектуальной) сфере:
- сформированность представлений о месте химии в современной научной картине мира; понимание роли химии в формировании кругозора и функциональной грамотности человека для решения практических задач;•
- объяснение роли химии в формировании научного мировоззрения; вклада биологических теорий в формирование современной естественно-научной картины мира; отрицательного влияния алкоголя, никотина, наркотических веществ на

развитие человека; влияния различных веществ на организм человека, экологических факторов на организм.

- умение пользоваться химической терминологией и символикой;
- решение элементарных химических задач; составление элементарных схем и уравнений взаимодействия веществ;
 - описание свойств элементов по ПСХЭ;
- умение давать количественные оценки и проводить расчёты по химическим формулам и уравнениям;
- сформированность умения описывать и различать изученные классы органических веществ;
- сформированность умения делать выводы, умозаключения из наблюдений, химических закономерностей, прогнозировать свойства неизученных веществ по аналогии с изученными;
 - 2. В ценностно-ориентационной сфере:
- признание ценности научного знания, его практической значимости, достоверности;
 - ценность химических методов исследования живой и неживой природы;
- понимание сложности и противоречивости самого процесса познания как извечного стремления к Истине.
 - 3. В сфере трудовой деятельности:
- овладение умениями и навыками постановки химических экспериментов и объяснения их результатов.
 - 4. В сфере физической деятельности:
- обоснование и соблюдение мер профилактики вирусных заболеваний, вредных привычек (курение, употребление алкоголя, наркомания); правил поведения в окружающей среде.

СОДЕРЖАНИЕ КУРСА. 10 КЛАСС. БАЗОВЫЙ УРОВЕНЬ

Предмет органической химии. Теория строения органических соединений А. М. Бутлерова. 5ч

Органические вещества: природные, искусственные и синтетические. Особенности состава и строения органических веществ. Витализм и его крах. Понятие об углеводородах.

Основные положения теории химического строения Бутлерова.

Валентность. Структурные формулы — полные и сокращённые. Простые (одинарные) и кратные (двойные и тройные) связи. Изомеры и изомерия. Взаимное влияние атомов в молекуле.

Демонстрации.

Плавление, обугливание и горение органических веществ. Модели (шаростержневые и объёмные) молекул органических соединений разных классов. Определение элементного состава органических соединений.

Лабораторные опыты.

Изготовление моделей органических соединений.

Углеводороды и их природные источники. 18 ч

Предельные углеводороды. Алканы. Определение. Гомологический ряд алканов и его общая формула. Структурная изомерия углеродной цепи. Радикалы. Номенклатура алканов. Химические свойства алканов: горение, реакции замещения (галогенирование), реакция разложения метана, реакция дегидрирования этана.

Непредельные углеводороды. **Алкены**. Этилен. Определение. Гомологический ряд алкенов. Номенклатура. Структурная и пространственная (геометрическая) изомерия. Промышленное получение алкенов: крекинг и дегидрирование алканов. Лабораторное получение этилена — реакция дегидратации этанола. Реакции присоединения: гидратация, гидрогалогенирование, галогенирование, полимеризации. Правило Марковникова. Окисление алкенов. Качественные реакции на непредельные углеводороды.

Алкадиены. **Каучуки**. Определение. Номенклатура. Сопряжённые диены. Бутадиен-1,3, изопрен. Реакция Лебедева. Реакции присоединения алкадиенов. Каучуки: натуральный, синтетические (бутадиеновый, изопреновый). Вулканизация каучука. Резина. Эбонит.

Алкины. Определение. Номенклатура. Получение и применение ацетилена. Химические свойства ацетилена: горение, реакции присоединения: гидрогалогенирование, галогенирование, гидратация (реакция Кучерова). Винилхлорид, поливинилхлорид.

Арены. Определение. Бензол: его строение, некоторые физические и химические свойства (горение, реакции замещения — галогенирование, нитрование), получение и применение. Экстракция.

Природный газ. Состав природного газа. Его нахождение в природе. Преимущества природного газа как топлива. Химическая переработка природного газа: конверсия, пиролиз. Синтез-газ и его использование.

Нефть и способы её переработки. Попутный нефтяной газ, его состав и фракции — газовый бензин, пропан-бутановая, сухой газ. Нефть, её состав и переработка — перегонка, крекинг, риформинг. Нефтепродукты. Октановое число; бензин.

Каменный уголь и его переработка. Ископаемый уголь: антрацит, каменный, бурый. Коксование каменного угля. Коксовый газ, аммиачная вода, каменноугольная смола, кокс. Газификация и каталитическое гидрирование каменного угля.

Демонстрации.

Горение метана, этана, ацетилена. Отношение метана, этилена, ацетилена и бензола к растворам перманганата калия и бромной воде. Получение этилена реакцией дегидратации этанола и ацетилена гидролизом карбида кальция. Разложение каучука при нагревании, испытание продуктов разложения на непредельность, коллекции «Нефть и нефтепродукты», «Каменный уголь и продукты его переработки», «Каучуки».

Лабораторные опыты.

Обнаружение продуктов горения свечи. Исследование свойств каучуков.

Кислородсодержащие органические соединения. 22 ч

Одноатомные спирты. Определение. Функциональная гидроксильная группа. Гомологический ряд предельных одноатомных спиртов. Изомерия положения функциональной группы. Водородная связь. Химические свойства спиртов. Альдегидная группа. Реакция этерификации, сложные эфиры. Применение спиртов. Действие метилового и этилового спиртов на организм человека.

Многоатомные спирты. Определение. Этиленгликоль. Глицерин. Получение и химические свойства многоатомных спиртов. Качественная реакция на многоатомные спирты. Антифриз.

Фенол. Строение, получение, свойства и применение фенола. Качественные реакции на фенол. Взаимное влияние атомов в молекуле фенола.

Альдегиды. Определение. Формальдегид и ацетальдегид. Химические свойства альдегидов. Качественные реакции на альдегиды. Реакции поликонденсации. Карбонильная группа. Кетоны на примере ацетона.

Карбоновые кислоты. Предельные одноосновные карбоновые кислоты, их гомологический ряд. Получение и применение. Химические свойства карбоновых кислот. Реакция этерификации.

Сложные эфиры. Жиры. Реакция этерификации. Сложные эфиры. Жиры, их состав и гидролиз (кислотный и щелочной). Мыла. Гидрирование жиров.

Углеводы. Углеводы. Моносахариды. Глюкоза как альдегидоспирт. Сорбит. Молочнокислое и спиртовое брожение. Фотосинтез. Дисахариды. Сахароза. Полисахариды: крахмал, целлюлоза.

Демонстрации.

Окисление спирта в альдегид. Качественная реакция на многоатомные спирты. Растворимость фенола в воде при обычной температуре и при нагревании. Качественные реакции на фенол. Качественные реакции на альдегиды. Взаимодействие глюкозы с гидроксидом меди(II) как альдегидоспирта. Качественная реакция на крахмал. Цветные реакции белков.

Лабораторные опыты.

Сравнение скорости испарения воды и этанола. Растворимость глицерина в воде. Химические свойства уксусной кислоты. Определение непредельности растительного масла.

Азотсодержащие органические соединения. 15 ч.

Амины. Аминогруппа. Амины предельные и ароматические. Анилин. Получение аминов. Реакция Зинина. Химические свойства и применение аминов.

Аминокислоты. **Белки**. Аминокислоты как амфотерные органические соединения. Глицин. Реакция поликонденсации. Пептидная связь. Первичная, вторичная, третичная структуры белков. Качественные реакции на белки. Гидролиз. Денатурация. Биологические функции белков в организме.

Демонстрации.

Качественная реакция на крахмал. Цветные реакции белков.

Практическая работа.

Идентификация органических соединений.

Органическая химия и общество. 8 чс

Биотехнология. Периоды её развития. Три направления биотехнологии: генная (или генетическая) инженерия; клеточная инженерия; биологическая инженерия. Генетически модифицированные организмы (ГМО) и трансгенная продукция. Клонирование. Иммобилизованные ферменты и их применение.

Полимеры. Классификация полимеров. Искусственные полимеры: целлулоид, ацетатный шёлк, вискоза, целлофан.

Синтетические полимеры. Способы получения полимеров: полимеризация и поликонденсация. Синтетические каучуки. Пластмассы: полистирол, тефлон, поливинилхлорид. Синтетические волокна: капрон, найлон, кевлар, лавсан.

Демонстрации.

Коллекции пластмасс, синтетических волокон и изделий из них. Разложение пероксида водорода с помощью каталазы природных объектов.

Лабораторные опыты.

Знакомство с образцами пластмасс, волокон и каучуков.

Практическая работа.

Распознавание пластмасс и волокон.

СОДЕРЖАНИЕ КУРСА. 11 КЛАСС. БАЗОВЫЙ УРОВЕНЬ

Строение веществ. 23 ч.

Основные сведения о строении атома. Строение атома: ядро и электронная оболочка. Изотопы. Химический элемент. Большой адронный коллайдер. Уровни строения вещества.

Периодическая система химических элементов Д. И. Менделеева в свете учения о строении атома. Физический смысл номеров: элемента, периода, группы. Валентные электроны. Электронная конфигурация атомов. Закономерности изменения свойств элементов в периодах и группах. Электронные семейства химических элементов.

Философские основы общности Периодического закона и теории химического строения. Предпосылки открытия Периодического закона и теории химического строения. Роль личности в истории химии. Роль практики в становлении и развитии химической теории.

Ионная химическая связь и ионные кристаллические решётки. Катионы как продукт восстановления атомов металлов. Анионы как продукт окисления атомов неметаллов. Ионная химическая связь и ионная кристаллическая решётка. Ионы простые и сложные.

Ковалентная химическая связь. Атомные и молекулярные кристаллические решётки. Ковалентная неполярная и полярная связи. Электроотрицательность. Кратность ковалентной связи. Обменный и донорно-акцепторный механизмы образования ковалентных связей. Полярность связи и полярность молекулы. Молекулярные и атомные кристаллические решётки.

Металлическая связь. Металлические кристаллические решётки. Металлическая химическая связь: ион-атомы и электронный газ. Физические свойства металлов и их применение на основе этих свойств. Сплавы чёрные и цветные.

Водородная химическая связь. Водородная химическая связь: межмолекулярная и внутримолекулярная. Значение водородной связи в природе и жизни человека.

Полимеры. Полимеры, их получение: реакции полимеризации и поликонденсации. Пластмассы. Волокна. Неорганические полимеры

Дисперсные системы. Дисперсные системы: дисперсная фаза и дисперсионная среда. Классификация дисперсных систем по агрегатному состоянию и по размеру частиц фазы. Грубодисперсные системы: эмульсии, суспензии, аэрозоли. Тонкодисперсные системы: золи и гели. Синерезис и коагуляция.

Демонстрации.

Различные формы Периодической системы химических элементов Д. И. Менделеева. Модель кристаллической решётки хлорида натрия. Образцы минералов с ионной кристаллической решёткой: кальцита, галита, модели кристаллических решёток «сухого льда» (или иода), алмаза, графита (или кварца). Модель молярного объёма газа. Образцы различных дисперсных систем: эмульсий, суспензий, аэрозолей, гелей и золей. Коагуляция. Синерезис.

Лабораторные опыты.

Моделирование металлической кристаллической решётки. Денатурация белка. Получение эмульсии растительного масла. Получение суспензии «известкового молока». Получение коллоидного раствора куриного белка и исследование его свойств с помощью лазерной указки.

Химические реакции. 19 ч.

Классификация химических реакций. Реакции без изменения состава веществ: аллотропизации и изомеризации. Причины аллотропии. Классификация реакций по числу и составу реагентов и продуктов и по тепловому эффекту. Термохимические уравнения реакций.

Скорость химических реакций. Скорость химической реакции и факторы её зависимости: природа реагирующих веществ, площадь их соприкосновения, температура, концентрация и наличие катализатора. Катализ. Ферменты. Ингибиторы.

Химическое равновесие и способы его смещения. Обратимые реакции. Общая характеристика реакции синтеза аммиака и условия смещения равновесия производственного процесса вправо.

Гидролиз. Гидролиз необратимый и обратимый. Три случая гидролиза солей. Роль гидролиза в обмене веществ. Роль гидролиза в энергетическом обмене.

Окислительно-восстановительные реакции. Степень окисления. Окислитель и восстановитель. Окисление и восстановление. Электронный баланс.

Электролиз расплавов и растворов. Практическое применение электролиза. Гальванопластика. Гальваностегия. Рафинирование.

Демонстрации.

Экзо- и эндотермические реакции. Тепловые явления при растворении серной кислоты и аммиачной селитры. Зависимость скорости реакции от природы веществ на примере взаимодействия растворов различных кислот одинаковой концентрации с одинаковыми кусочками (гранулами) цинка и одинаковых кусочков разных металлов (магния, цинка, железа) с раствором соляной кислоты. Взаимодействие растворов серной кислоты с растворами тиосульфата натрия различной концентрации и температуры. Модель кипящего слоя. Разложение пероксида водорода с помощью неорганических катализаторов (солей железа, иодида калия) и природных объектов, содержащих каталазу (сырое мясо, картофель). Простейшие окислительно-восстановительные реакции: взаимодействие цинка с соляной кислотой и железа с сульфатом меди(II). Модель электролизёра. Модель электролизной ванны для получения алюминия.

Лабораторные опыты.

Проведение реакций, идущих до конца, по правилу Бертолле. Разложение пероксида водорода с помощью диоксида марганца. Смещение равновесия в системе Fe^{3+} +

 $3CNS^- \leftrightarrow Fe(CNS)_3$. Испытание индикаторами среды растворов солей различных типов. Взаимодействие раствора сульфата меди(II) с железом и гидроксидом натрия.

Практическая работа.

Решение экспериментальных задач по теме «Химическая реакция».

Вещества и их свойства. 17 ч.

Металлы. Общие физические свойства металлов. Классификация металлов в технике и химии. Общие химические свойства металлов. Условия взаимодействия металлов с растворами кислот и солей. Металлотермия.

Неметаллы. **Благородные газы**. Неметаллы как окислители. Неметаллы как восстановители. Ряд электроотрицательности. Инертные или благородные газы.

Кислоты неорганические и органические. Кислоты с точки зрения атомномолекулярного учения. Кислоты с точки зрения теории электролитической диссоциации. Кислоты с точки зрения протонной теории. Общие химические свойства кислот. Классификация кислот.

Основания неорганические и органические. Основания с точки зрения атомномолекулярного учения. Основания с точки зрения теории электролитической диссоциации. Основания с точки зрения протонной теории. Общие химические свойства оснований. Классификация оснований.

Амфотерные соединения неорганические и органические. Амфотерные оксиды и гидроксиды. Получение и свойства амфотерных неорганических соединений. Аминокислоты — амфотерные органические соединения. Пептиды и пептидная связь.

Соли. Классификация солей. Жёсткость воды и способы её устранения. Переход карбоната в гидрокарбонат и обратно. Общие химические свойства солей.

Демонстрации.

Коллекция металлов. Коллекция неметаллов. Взаимодействие концентрированной азотной кислоты с медью. Вспышка термитной смеси. Вспышка чёрного пороха. Вытеснение галогенов из их растворов другими галогенами. Взаимодействие паров концентрированных растворов соляной кислоты и аммиака («дым без огня»).

Получение аммиака и изучение его свойств. Получение амфотерного гидроксида и изучение его свойств. Получение жёсткой воды и устранение её жёсткости.

Лабораторные опыты.

Получение нерастворимого гидроксида и его взаимодействие с кислотой. Исследование концентрированных растворов соляной и уксусной кислот капельным методом при их разбавлении водой. Различные случаи взаимодействия растворов солей алюминия со щёлочью. Устранение жёсткости воды.

Практическая работа.

Решение экспериментальных задач по теме «Вещества и их свойства».

Химия и современное общество. 9ч.

Химическая технология. Производство аммиака и метанола. Химическая технология. Химические процессы, лежащие в основе производства аммиака и метанола. Характеристика этих процессов. Общие научные принципы химического производства.

Химическая грамотность как компонент общей культуры человека. Маркировка упаковочных материалов, электроники и бытовой техники, экологичного товара, продуктов питания, этикеток по уходу за одеждой.

Демонстрации.

Модель промышленной установки получения серной кислоты. Модель колонны синтеза аммиака. Видеофрагменты и слайды о степени экологической чистоты товара.

Лабораторные опыты.

Изучение маркировок различных видов промышленных и продовольственных товаров.

Тематическое планирование учебного курса с определением основных видов учебной деятельности

68 часов в 10 классе;

68 часов в 11 классе

Всего 136 часов за два года обучения

Контрольных работ
0
U
1
1
1
0
3
1
1
1
0